69 research outputs found

    Context Matters: A Theory of Semantic Discriminability for Perceptual Encoding Systems

    Full text link
    People's associations between colors and concepts influence their ability to interpret the meanings of colors in information visualizations. Previous work has suggested such effects are limited to concepts that have strong, specific associations with colors. However, although a concept may not be strongly associated with any colors, its mapping can be disambiguated in the context of other concepts in an encoding system. We articulate this view in semantic discriminability theory, a general framework for understanding conditions determining when people can infer meaning from perceptual features. Semantic discriminability is the degree to which observers can infer a unique mapping between visual features and concepts. Semantic discriminability theory posits that the capacity for semantic discriminability for a set of concepts is constrained by the difference between the feature-concept association distributions across the concepts in the set. We define formal properties of this theory and test its implications in two experiments. The results show that the capacity to produce semantically discriminable colors for sets of concepts was indeed constrained by the statistical distance between color-concept association distributions (Experiment 1). Moreover, people could interpret meanings of colors in bar graphs insofar as the colors were semantically discriminable, even for concepts previously considered "non-colorable" (Experiment 2). The results suggest that colors are more robust for visual communication than previously thought.Comment: To Appear in IEEE Transactions on Visualization and Computer Graphic

    Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity

    Get PDF
    Background: Environmental mycobacteria (EM) include species commonly found in various terrestrial and aquatic environments, encompassing animal and human pathogens in addition to saprophytes. Approximately 150 EM species can be separated into fast and slow growers based on sequence and copy number differences of their 16S rRNA genes. Cultivation methods are not appropriate for diversity studies; few studies have investigated EM diversity in soil despite their importance as potential reservoirs of pathogens and their hypothesized role in masking or blocking M. bovis BCG vaccine. Methods: We report here the development, optimization and validation of molecular assays targeting the 16S rRNA gene to assess diversity and prevalence of fast and slow growing EM in representative soils from semi tropical and temperate areas. New primer sets were designed also to target uniquely slow growing mycobacteria and used with PCR-DGGE, tag-encoded Titanium amplicon pyrosequencing and quantitative PCR. Results: PCR-DGGE and pyrosequencing provided a consensus of EM diversity; for example, a high abundance of pyrosequencing reads and DGGE bands corresponded to M. moriokaense, M. colombiense and M. riyadhense. As expected pyrosequencing provided more comprehensive information; additional prevalent species included M. chlorophenolicum, M. neglectum, M. gordonae, M. aemonae. Prevalence of the total Mycobacterium genus in the soil samples ranged from 2.3×107 to 2.7×108 gene targets g−1; slow growers prevalence from 2.9×105 to 1.2×107 cells g−1. Conclusions: This combined molecular approach enabled an unprecedented qualitative and quantitative assessment of EM across soil samples. Good concordance was found between methods and the bioinformatics analysis was validated by random resampling. Sequences from most pathogenic groups associated with slow growth were identified in extenso in all soils tested with a specific assay, allowing to unmask them from the Mycobacterium whole genus, in which, as minority members, they would have remained undetected

    Ovine pedomics : the first study of the ovine foot 16S rRNA-based microbiome

    Get PDF
    We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Three flocks were selected, one a flock with no signs of footrot or interdigital dermatitis, a second flock with interdigital dermatitis alone and a third flock with both interdigital dermatitis and footrot. The sheep were classified as having either healthy interdigital skin (H), interdigital dermatitis (ID) or virulent footrot (VFR). The ovine interdigital skin bacterial community varied significantly by flock and clinical condition. The diversity and richness of operational taxonomic units was greater in tissue from sheep with ID than H or VFR affected sheep. Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria were the most abundant phyla comprising 25 genera. Peptostreptococcus, Corynebacterium and Staphylococcus were associated with H, ID and VFR respectively. Sequences of Dichelobacter nodosus, the causal agent of ovine footrot, were not amplified due to mismatches in the 16S rRNA universal forward primer (27F). A specific real time PCR assay was used to demonstrate the presence of D. nodosus which was detected in all samples including the flock with no signs of ID or VFR. Sheep with ID had significantly higher numbers of D. nodosus (104-109 cells/g tissue) than those with H or VFR feet

    Impact of aprotinin and renal function on mortality: a retrospective single center analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An estimated up to 7% of high-risk cardiac surgery patients return to the operating room for bleeding. Aprotinin was used extensively as an antifibrinolytic agent in cardiac surgery patients for over 15 years and it showed efficacy in reducing bleeding. Aprotinin was removed from the market by the U.S. Food and Drug Administration after a large prospective, randomized clinical trial documented an increased mortality risk associated with the drug. Further debate arose when a meta-analysis of 211 randomized controlled trials showed no risk of renal failure or death associated with aprotinin. However, only patients with normal kidney function have been studied.</p> <p>Methods</p> <p>In this study, we look at a single center clinical trial using patients with varying degrees of baseline kidney function to answer the question: Does aprotinin increase odds of death given varying levels of preoperative kidney dysfunction?</p> <p>Results</p> <p>Based on our model, aprotinin use was associated with a 3.8-fold increase in odds of death one year later compared to no aprotinin use with p-value = 0.0018, regardless of level of preoperative kidney dysfunction after adjusting for other perioperative variables.</p> <p>Conclusions</p> <p>Lessons learned from our experience using aprotinin in the perioperative setting as an antifibrinolytic during open cardiac surgery should guide us in testing future antifibrinolytic drugs for not only efficacy of preventing bleeding, but for overall safety to the whole organism using long-term clinical outcome studies, including those with varying degree of baseline kidney function.</p

    Inferring Carbon Sources from Gene Expression Profiles Using Metabolic Flux Models

    Get PDF
    Background: Bacteria have evolved the ability to efficiently and resourcefully adapt to changing environments. A key means by which they optimize their use of available nutrients is through adjustments in gene expression with consequent changes in enzyme activity. We report a new method for drawing environmental inferences from gene expression data. Our method prioritizes a list of candidate carbon sources for their compatibility with a gene expression profile using the framework of flux balance analysis to model the organism’s metabolic network. Principal Findings: For each of six gene expression profiles for Escherichia coli grown under differing nutrient conditions, we applied our method to prioritize a set of eighteen different candidate carbon sources. Our method ranked the correct carbon source as one of the top three candidates for five of the six expression sets when used with a genome-scale model. The correct candidate ranked fifth in the remaining case. Additional analyses show that these rankings are robust with respect to biological and measurement variation, and depend on specific gene expression, rather than general expression level. The gene expression profiles are highly adaptive: simulated production of biomass averaged 94.84% of maximum when the in silico carbon source matched the in vitro source of the expression profile, and 65.97% when it did not. Conclusions: Inferences about a microorganism’s nutrient environment can be made by integrating gene expression data into a metabolic framework. This work demonstrates that reaction flux limits for a model can be computed which are realistic in the sense that they affect in silico growth in a manner analogous to that in which a microorganism’s alteration of gene expression is adaptive to its nutrient environment.National Institute of Allergy and Infectious Diseases (U.S.) (grant HHSN 2722008000059C)National Institute of Allergy and Infectious Diseases (U.S.) (grant HHSN 26620040000IC)Bill & Melinda Gates Foundation (grant 18651010-37352-A

    A framework for human microbiome research

    Get PDF
    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies

    Structure, function and diversity of the healthy human microbiome

    Get PDF
    Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273 to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander; U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.; U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.; R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.; R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.; R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang, F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J. V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.); DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research; U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL Laboratory-Directed Research and Development grant 20100034DR and the US Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis of the HMPdata was performed using National Energy Research Scientific Computing resources, the BluBioU Computational Resource at Rice University

    Phenobarbital use in an infant requiring extracorporeal membrane life support

    No full text
    Over the past two decades, there has been an increased use of extracorporeal membrane life support (ECLS) for critically ill neonates and infants. Approximately 20% of these children will experience seizures as a complication of ECLS or the comorbid condition which necessitated extracorporeal support. While phenobarbital is one of the most common drugs used to treat seizures in children, little is known about its dosing while on ECLS. We present a 3-month-old girl who required ECLS after cardiac arrest in the postoperative period following surgery for complex congenital heart disease. The patient subsequently developed seizure activity, which was treated with phenobarbital. Following an initial loading dose of 30 mg/kg, the serum concentration was 47.9 mcg/ml. A supplementary loading dose of 10 mg/kg was administered 8 h later with an increase of the maintenance dose to 8 mg/kg/day. The phenobarbital serum concentrations were 65.9 and 72.8 mcg/ml on the subsequent days. Despite therapeutic levels of phenobarbital, the patient continued to exhibit clinical and electroencephalographic evidence of seizure activity and a midazolam infusion was started at 0.3 mg/kg/h. Because of continued seizure activity, the patient ultimately required titration of midazolam to 1.2 mg/kg/h by day 7 of ECLS to control seizure activity. Due to severe intracerebral bleeding on day 9, ECLS was withdrawn and the patient expired. Our experience demonstrates some of the challenges of medication titration during ECLS. Previous reports of phenobarbital dosing during ECLS are reviewed and considerations for the dosing of anticonvulsant medications during extracorporeal support are discussed

    A case report of a retained and knotted caudal catheter

    No full text
    Caudal catheters advanced to the lumbar and thoracic regions can be used to provide excellent analgesia for pre-term neonates undergoing major abdominal and thoracic procedures. Despite their frequent use, attention to detail is mandatory to avoid complications related to the medications used or the placement technique. We present a 2-day-old, 2 kg, pre-term infant who was born at 32 weeks gestational age with a tracheoesophageal fistula. Following anesthetic induction, a caudal epidural catheter was placed with the intent of threading it to the mid-thoracic level. The intraoperative and post-operative courses were uneventful with the epidural catheter providing adequate analgesia without the need for supplemental intravenous opioids. During catheter removal, resistance was noted and it could not be easily removed. With repositioning and various other maneuvers, the catheter was removed with some difficulty. On examination of the catheter, a complete knot was noted. Options for catheter advancement from the caudal space to the thoracic dermatomes are reviewed and techniques discussed for removal of a retained epidural catheter
    corecore